65 research outputs found

    Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq

    Get PDF
    AbstractProper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with regional phenotypes

    Mutations in the RNA Granule Component TDRD7 Cause Cataract and Glaucoma

    Get PDF
    The precise transcriptional regulation of gene expression is essential for vertebrate development, but the role of posttranscriptional regulatory mechanisms is less clear. Cytoplasmic RNA granules (RGs) function in the posttranscriptional control of gene expression, but the extent of RG involvement in organogenesis is unknown. We describe two human cases of pediatric cataract with loss-of-function mutations in TDRD7 and demonstrate that Tdrd7 nullizygosity in mouse causes cataracts, as well as glaucoma and an arrest in spermatogenesis. TDRD7 is a Tudor domain RNA binding protein that is expressed in lens fiber cells in distinct TDRD7-RGs that interact with STAU1-ribonucleoproteins (RNPs). TDRD7 coimmunoprecipitates with specific lens messenger RNAs (mRNAs) and is required for the posttranscriptional control of mRNAs that are critical to normal lens development and to RG function. These findings demonstrate a role for RGs in vertebrate organogenesis

    Refractive surgery for unilateral high myopia in children

    No full text
    To evaluate the safety and efficacy of refractive surgery in children

    TRIP8b is required for maximal expression of HCN1 in the mouse retina.

    Get PDF
    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are cation-selective channels present in retina, brain and heart. The activity of HCN channels contributes to signal integration, cell excitability and pacemaker activity. HCN1 channels expressed in photoreceptors participate in keeping light responses transient and are required for normal mesopic vision. The subcellular localization of HCN1 varies among cell types. In photoreceptors HCN1 is concentrated in the inner segments while in other retinal neurons, HCN1 is evenly distributed though the cell. This is in contrast to hippocampal neurons where HCN1 is concentrated in a subset of dendrites. A key regulator of HCN1 trafficking and activity is tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b). Multiple splice isoforms of TRIP8b are expressed throughout the brain and can differentially regulate the surface expression and activity of HCN1. The purpose of the present study was to determine which isoforms of TRIP8b are expressed in the retina and to test if loss of TRIP8b alters HCN1 expression or trafficking. We found that TRIP8b colocalizes with HCN1 in multiple retina neurons and all major splice isoforms of TRIP8b are expressed in the retina. Photoreceptors express three different isoforms. In TRIP8b knockout mice, the ability of HCN1 to traffic to the surface of retinal neurons is unaffected. However, there is a large decrease in the total amount of HCN1. We conclude that TRIP8b in the retina is needed to achieve maximal expression of HCN1

    Alström syndrome caused by maternal uniparental disomy

    No full text
    Purpose: To describe a case of Alström syndrome arising from maternal uniparental disomy. Observations: A 13-month-old boy with poor vision and nystagmus was diagnosed with Alström syndrome based on genetic testing that identified a homozygous pathogenic variant, ALMS1 c.2141_2141del (p.Ser714Tyrfs*6), that was only found in his mother and not his father. In contrast to the usual autosomal recessive inheritance pattern in which a child inherits a variant from each parent, multi-step genetic testing of the child and both parents confirmed uniparental disomy as the mechanism of inheritance. Conclusions and Importance: Confirmation of uniparental disomy in autosomal recessive disorders allows for parental assurance that future offspring will be unaffected

    AAV2/4-RS1 gene therapy in the retinoschisin knockout mouse model of X-linked retinoschisis

    No full text
    Objective To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. Methods AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1μL) or subretinal (N = 21; 2μL) injections at postnatal day 60–90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50–60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. Results The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (pConclusions AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients

    HCN1 is required to fully recruit TRIP8b to the membrane.

    No full text
    <p><i>A)</i> Anti-HCN1 antibodies were used to co-immunoprecipitate TRIP8b from retinal membranes. Membranes prepared from HCN1<sup>−/−</sup> retinas were used as the negative control. <i>B)</i> Western blot comparing the amount of TRIP8b present in total retina lysates from wild type, both TRIP8b knockout lines, and HCN1<sup>−/−</sup> mice. Phosducin (PDC) is the loading control. <i>C)</i> Retina lysates from wild type and HCN1<sup>−/−</sup> mice separated into cytosolic and membrane fractions probed with anti-TRIP8b and anti-HCN1 antibodies. PDC and sodium/potassium ATPase (NKA) are loading controls for each fraction. Immunostaining of TRIP8b in wild type (<i>D</i>) and HCN1<sup>−/−</sup> retina (<i>E</i>) is indistinguishable. Abbreviations as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0085850#pone-0085850-g001" target="_blank">Figure 1</a>; Scale bars are 20 µm.</p
    • …
    corecore